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CHAPTER 5 

Results 

Performance Surface 

Following the scheme shown in second chapter (Fig 2.12 & 2.13), the performance 

surface of the derived network (Fig. 3.39) is first empirically obtained for individual 

adaptive weight pairs (wO3 & wO4 with weight step, w = 0.1 between 4.5 to 6.5 and w 

= 0.25 else) as shown in Figures 5.1, 5.2 and 5.3. The performance surface is obtained 

with the E-N receiving B and S-stimulus but no D-stimulus. Thus, also called conditioned 

performance surface. Note that wO3 is the feeding field weight for ENU’s in Eck3 

(network end with additional drive stimulus) at the receiving end of sensory stimulus 

while wO4 is the adaptive weight for Eck4 ENU’s (network end with just bias stimulus). 

The performance index is defined by 

 2

GN ENP Desired - Transformed                                                (1). 

Starting from initial weights, wO3 = 0 and wO4 = 0, the surface remains flat at 

maximum P but with increasing weight values the surface has regions of local minima 

(arrow head, Fig. 5.1) and a global minima (arrow, Fig. 5.1). With further increase in 

weight values the surface climbs, eventually reaching maximum P when adaptive weight 

for the dipole channel with inhibitory connection to the M-node increases beyond a 

certain value (wO4 ≥ 4.9). It should be noted that beyond a certain value of adaptive 

weights (either wO3 or wO4 > 8.4) ENU’s in Eck3 or Eck4 gets into saturated (unwanted) 

firing mode thus, causing loss of functional performance. 
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Figure 5.1. Performance surface (conditioned) of Eckhorn network obtained empirically 
by manually (weight step, w = 0.1 between 4.5 to 6.5 and w = 0.25 else) adjusting the 
adaptive weight pairs (wO3 & wO4). Blue dots on the performance represent data points. 
Weight wO3 is the adaptive weight in ENU’s of Eck3 while weight wO4 is for ENU’s of 
Eck4. A global minimum (arrow) is situated between the two local minima (arrowheads). 
Note that for the E-DN in this particular E-N, Eck3 is on the channel with excitatory 
connection to M-node while Eck4 is on the channel with inhibitory connection. 
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Figure 5.2. Side views along wO3 weight axes of the 3D-performance surface (Fig.5.1). 
Top: Performance index (P) decreases to local minima, global minima, local minima and 
then climbs such that beyond a certain wO3 value (>8.4) the surface becomes non P-
selective. The regions of minima (double arrow) are enlarged in bottom two sub-figures. 
Middle: Shows the first local minima and the global minima with their respective P 
values. Bottom: Shows the global minima and second local minima with respective P 
values. The dashed horizontal line in lower two figures indicates P = 0 (for reference). 
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Figure 5.3. Side views along wO4 weight axes at various slices (different fixed wO3 
values) of the 3D-performance surface (Fig.5.1). The numbered arrows give respective P 
values. The 2nd row figure (wO3 = 4.9) is the slicing at the region of first local minima 
(first arrow head, Fig. 5.1) within a certain range of wO4 beyond which P increases to its 
maximum value (P = 5.742286). Similarly, the 4th row figure (wO3 = 5.2) is the slicing at 
global minima (arrow, Fig. 5.1) and 7th row figure (wO3 = 6) the slicing at second local 
minima (second arrow head, Fig. 5.1). 
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Adaptation Algorithm 

Though the global minimum is located between local minima, the minima values are 

very close to each other. For instance, difference between the global minimum and the 

larger local minima is of the order 10-2. Thus adaptive weight values within the region of 

minima do not cause any practical difference whether it is local minima or global 

minimum. Under the set membership paradigm for adaptive systems, these miniscule 

differences place the minimum points within the same solution set [Zadeh 1963, 

Combettes 1993]. Thus steepest descent method can be implemented around the region of 

minima. However a gradient method cannot be used in regions with constant gradient and 

also between regions with different constant (gradient) regions due to sudden (steep) 

changes between them. Therefore, the principle of gain scheduling is implemented for 

performance outside the region of the minima. The performance surface is therefore 

divided into two regions: 

 Region 1 (R1) when |Gradient| ≤ GMinimum, region of flat spot, 

 Region 2 (R2) when |Gradient| > GMinimum. 

This checking for region of flat spot is given by the scalar, 

3 4 3 4( , ) ( , )
Gradient

2 2
O O O OP w w P w w   


    


 

               (2) 

where, performance index (P) is measured for both weight perturbation (δ = 5/103). 

 

The adaptation for the network is such that the adaptive procedure in R1 pushes the 

weights (wO3 & wO4) a constant amount. The purpose of this adaptive procedure is to 

push the adaptive weights until performance gets to R2, where steepest decent method 

can be used. 
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The push-weight procedure is given by                    

1k k Uniform ExtraW W Push Push                                                    (3)           
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,

1, excitatory

1, inhibitoryi M

if
Conn

if


 

 

where i is the node end (Ecki) of the E-DN channel connected to M-node. For the 

reception of b by the adaptive weight in question, connection function of the opposing 

channel is subtracted from the function of channel carrying the adaptive weight whose 

outcome is given by the Heaviside step function, 
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Therefore the adaptive weight of the channel with excitatory connection receives b and 

hence PushExtra. The need for PushExtra in the push-weight procedure arises because with 

just PushUniform, the increasing adaptive weight (wo3 & wo4) due to the push could pass 

diagonally across the performance surface (Fig. 5.1) missing the region of minima. 

This problem of determining b and of invoking PushExtra is closely related to the 

“context-dependent choice” problem [Grossberg 1978]. That is, the same sensory cue can 

result in different responses depending upon the context. Here, the word context is used 
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to mean events or processes (physical & mental) characteristic of a particular situation 

which has a behavioral impact [Reber 2001]. Grossberg articulated some possible 

approached to context-dependant choice. Figure 5.4 illustrates one of these [Wells 

2011b]. 

The E-DN shown in this thesis is just part of a map or network system. Thus the 

connection types (excitatory and inhibitory) from E-DN to M-node occur in 

complementary pairs [James 1980, Plutchik 1980]. In other words, if for a particular 

context, the connection of E-DN channel with M-node is excitatory than in another 

context the connection for the same channel may be inhibitory (Fig. 5.4). 

 

Figure 5.4. An architectonic solution to the “context-dependant choice”. The figure 
shows contradictory unconditioned stimulus (D1 & D2) resulting in respective responses 
(M-node output). Thus adaptation of the network is dependent on which of the two dipole 
channels receive unconditioned stimulus. Solid lines represent excitatory connection 
while dashed lines represent inhibition. 
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During the learning stage, E0N receives a bias, drive and sensory stimulus. Thus 

Eck5 and Eck6 spiking will differ during dual-stimuli. An alternative PushExtra equation is 

1
3 4 0

1
4 3 0

( )

( )
ENU ENU

Extra

ENU ENU

b Spikes Spikes
Push

b Spikes Spikes

  
    

 

where, SpikesENUx is the total spike output from the respective ENU node (EckX) during 

adaptation conditions (that is, when the E-N receives a bias, drive and sensory stimulus). 

Thus the PushExtra parameter follows a Hebbian rule. Either of the above PushExtra 

equations can be used in the push-weight procedure. 

Finally, if the performance is located in region R2 on the performance surface, 

adaptation procedure switches over to steepest descent method which is given by         

1
ˆ

k kW W r                                                                               (4)                               

such that rate r = 5/106 and the gradient estimate is 
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where performance index (P) is measured for individual weight perturbations (δ = 5/103). 

Since flat region R1 can also occur in region of minima triggering the push-weight 

procedure, an increase for P following the procedure is checked. Therefore, no P increase 

means it is not in region of minima. However, for P in region of minima, adaptive 

weights are set to the values responsible for P minima. That is, set to the weights prior to 

P increase. Figure 5.5 shows the flowchart implementing the adaptive procedure, i.e., 

adaptation algorithm for the Eckhorn network. 
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Figure 5.5. Flowchart showing the adaptive algorithm for the Eckhorn network. First, P is 
obtained from the initial weight inputs (W) which is then used for calculating the gradient 
for flat region check by simultaneously perturbing both the adaptive weights. Depending 
upon where P is located on the performance surface, flat region or not, either the Push-
Weight procedure or the steepest descent method is chosen to update W (Wk+1) for the 
next weight input. In region of minima the P’ caused by the push-weight is compared 
with P. Thus in minima, P’ > P and algorithm is stopped with adaptive weights, Wk+1 = 
Wk. Note that the parameters for Push-Weight procedures PushUniform & PushExtra are 
different. 
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Learning Curve and Weight Curves 

The performance surface of E-N during conditioning (i.e., with B, D and S-stimulus) 

is different from conditioned performance surface (Fig. 5.6). Though the later 

performance surface (Fig. 5.6a) is what matters for the adapted weights, the dynamics of 

the adapting weights depends on the former performance surface (Fig. 5.6b). That is, 

during adaptation and hence during conditioning the P used for estimating the gradient 

for flat region check and ̂ for the steepest-descent method (Fig. 5.5) is based on the 

conditioning performance surface (Fig. 5.6b). However, the P of the E-N with the 

adapted weight is evaluated against the conditioned performance surface (Fig. 5.6a). 

Implementing the algorithm (Fig. 5.5) with initial weights wO3 = 0 and wO4 = 0 of E-N 

(Fig. 3.39) during conditioning, the learning curve was obtained (Fig. 5.8a). Figures 5.7 

and 5.8 shows P in the learning curve settles at weight values which correspond to a 

solution set performance region (arrows, Fig. 5.7 & 5.8b) in both performance surfaces. 

Superimposing PConditioned (Fig. 5.7b) and PConditioning (Fig. 5.7d), one notices that regard-

less of the initial dip amount, the instant of the dip for both PConditioned and PConditioning 

coincides with the same weight values (arrow, Fig. 5.8b). As mentioned earlier, the 

weight values within the region of minima do not cause any practical difference whether 

it is local minima or global minimum of the conditioned performance surface. Similarly, 

though P in the learning curve dips and then rise to a plateau (arrow, Fig. 5.8a) the differ-

ence between the least P and P value at plateau is of the order 10-2. The apparent rise of P 

from the minimum P in the learning curve to its plateau, especially when considered with 

respect to the conditioned performance surface, becomes less significant. Thus the 

minimum and plateau P values are within the solution set as per set membership. 
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Figure 5.6. Conditioned (a) and Conditioning (b) Performance surface of Eckhorn 
network obtained empirically by manually (weight step, w = 0.1 between 4.5 to 6.5 and 
w = 0.25 else) adjusting the adaptive weight pairs (wO3 & wO4). (a) Same as Figure 5.1 
is the surface during E-N receiving B and S-stimuli while for (b) E-N receives all three 
stimuli, B, S and D. Weights wO3 and wO4 are adapting in (b) and adapted in (a). Thus, 
adaptation algorithm follows the conditioning performance surface (b). 
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Figure 5.7. Conditioned and Conditioning Performance surface of Eckhorn network. (a) 
and (c) are conditioned and conditioning surface sections respectively from their whole 
surface (Fig. 5.6). The sections include weight ranges, wO3[0, 10] and wO4[0, 4.8]. 
Bottom figures, (b) and (d) are sections of respective figures (a) and (c) taken along wO3 
weight axes of the above 3D-surfaces. The arrows in all four figures indicate the dip from 
the initial plateau. The dip (arrow) correspond to when wO3 ≈ 4.9056 and wO4[0, 4.8]. 
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Figure 5.8. Conditioning learning curve (a) of E-N and performance surface (b) along 
wO3 - axis. (b) is obtained by superimposing Figures 5.7b and 5.7d. 

(a). P starts out in the region of flat spot (R1) and remains in same R1 with increasing 
adaptive weights (push-weight procedure) until at 172nd iteration it moves down into new 
R1 (arrow) at the region of minima where the adaptation stops because beyond this point 
the performance gets worse (P increases). Note the y-axis scale (P value) in (a). 

(b). P for the learning curve (a) follows PConditioning(b) during adaptation. The plateau 
(arrow (a)) in the learning curve after the fall in P corresponds to adaptive weight values 
at the dip (arrow (b)) in PConditioning. (b) also shows that the adaptive weights in learning 
curve plateau (arrow (a)) and hence the adapted weights also correspond to the dip of 
PConditioned. 
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The dynamics of the learning curve is shown in Figure 5.9. After the 99th iteration, 

|Gradient| > GMinimum (middle Fig. 5.9) thus, choosing steepest-descent method in the 

algorithm (Fig. 5.5). The steepest-descent method causes
O3w̂ to change (bottom Fig. 5.9) 

but
O4w̂ remains at zero. However after around 172nd iteration, the gradient estimate for 

flat region check and
O3w̂ fluctuates, though at different magnitudes. Therefore, after 

172nd iteration onwards this
O3w̂ fluctuation results in an average wO3 value. The average 

wO3 (≈ 4.9056) and a non-changing wO4 (3.92) values causes the P plateau in the learning 

curve (double arrow in top Fig. 5.9). In other words, the P plateau in the learning curve 

(arrow, Fig. 5.10a) is due to the loop operation along the steepest-descent method path of 

the adaptive algorithm (Fig. 5.10b). This is merely the usual misadjustment property of 

gradient descent [Widrow & Stearns 1985]. The changes in the adaptive weights (wO3 & 

wO4) responsible for the performance shift in the learning curve are shown in Figure 5.11. 

Figures 5.12 and 5.13 shows the weight-learning curves for Grossberg’s and 

Eckhorn’s network respectively. The initial values for the adaptive weights are zero in 

Grossberg’s network. The curves are plotted with same time axis (milliseconds) for one-

on-one comparison. Due to the outstar-rule implemented in Grossberg’s network, the 

adaptive weight for the node receiving B and no D stimulus (wO4(Grossberg)) remains zero 

while wO3(Grossberg) (node with additional D stimulus) keeps getting bigger until it reaches 

a steady-state (optimal) value (≈ 0.4972). Adaptive weights in Grossberg’s network 

reaches optimal value at around 110 sec or 1.83 min. However, adaptive weights in 

Eckhorn’s network reaches optimal value at around 258 sec or 4.3min. That is, adaptation 

for the Eckhorn network is about two and half times slower (2.4 x). Investigation on 
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optimization techniques for speeding up the adaptation is outside the scope of this thesis. 

 

Figure 5.9. Learning curve of E-N with gradient estimates for flat region and wO3. 
Learning curve or conditioning learning curve (a) is the same curve seen in Figure 5.8a. 
The double arrow indicates the plateau region (arrow, Fig. 5.8a) which begins at 172nd 
iteration. During the first 99 iterations the gradient estimate for flat region check (middle 
figure) is | Gradient | ≤ GMinimum, thus adaptive weights follow push-weight procedure 
(Fig. 5.5). However during succeeding iterations | Gradient | > GMinimum, thus undergoing 
steepest descent procedure (Fig. 5.5). In the plateau region (double arrow), the gradient 
fluctuates by the same quantity. This fluctuation corresponds to those of wO3 gradient 

estimate (
O3w̂ ), bottom figure. 

O4w̂ = 0 (not shown) during the adaptation process. 
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Figure 5.10. Learning curve of E-N. The plateau (arrow) in conditioning learning curve 
(a) beginning at 172nd iteration corresponds to fluctuation in gradient estimate for flat 
region check (middle Fig. 5.9), thus following the steepest descent method (b). During 

this plateau,
O3w̂ also fluctuates (bottom Fig. 5.9) resulting in an average wO3 value. The 

fluctuations in flat region gradient estimate and
O3w̂ results in repetition (b) along the 

steepest descent method of the adaptive algorithm. 
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Figure 5.11. Weight changes (b) of Eckhorn network responsible for the learning curve 
(a). The adaptive weights (wO3 & wO4) increases (push-weight procedure) in R1 of the 
initial plateau (Fig. 5.6) until it settles at the region of minima (arrow, (a)). The weights 
reach optimal values (arrows) at 172nd iteration. The labeled values (wO3 ≈ 4.9056, wO4 = 
3.92) corresponds to the P plateau seen in the learning curve (Fig. 5.10a). Note that wO3 ≈ 

4.9056 is an average value due to the
O3w̂ fluctuations (bottom Fig. 5.9). 
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Figure 5.12. Weight-Learning curves of Grossberg’s network plotting the adaptive 
weights (wO3(Grossberg) & wO4(Grossberg)) against time in milliseconds. The weights reach 
optimal values (wO3(Grossberg) ≈ 0.4972) at 110 sec or 1.83 min. 
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Figure 5.13. Weight-Learning curves of Eckhorn’s network plotting the adaptive weights 
(wO3(Eckhorn) & wO4(Eckhorn)) against time in milliseconds. The weights reach optimal values 
(wO3(Eckhorn) ≈ 4.9056 and wO4(Eckhorn)= 3.92) at around 258 sec or 4.3 min (172nd 
iteration). 


